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LETTER TO THE EDITOR

The asymmetric Hubbard model on a two-dimensional
cluster

Zbigniew Dománski, Romuald Lemánski† and Ǵabor F́ath‡
Institute of Theoretical Physics, University of Lausanne, CH-1015 Lausanne, Switzerland

Received 13 March 1996

Abstract. An interaction between two heavy electrons mediated by two light electrons is
investigated within the asymmetric Hubbard model on a square cluster with 6×6 sites. The pair
correlation function describing the probabilities of all relative positions of the heavy electrons
is calculated by an approximative method. An effective attraction is found to exist in a certain
range of model parameters.

Electrons moving among localized particles, and interacting with them locally, effectively
produce an interaction between the particles. In general, this is a many-body, long-range
interaction which brings about an arrangement of the localized particles, as was found,
for example, for the Falicov–Kimball model (FKM) [1–4]. The FKM describes itinerant
electrons that jump on a lattice, and ions fixed at the lattice sites. It is assumed here that
any site may be occupied by no more than one electron and one ion. The Hamiltonian is

HFKM = −
∑
〈k,l〉

d+
k dl + U

∑
k

d+
k dkf

+
k fk (1)

wheredk and fk are annihilation operators for the electrons and the ions, respectively, at
sitesk = 1, . . . , N . The hopping term of the electrons is summed over all nearest-neighbour
(n.n.) lattice sites〈k, l〉 and the hopping integral is taken to be the unit of energy. The on-
site interaction between ions and electrons can be either attractive (U < 0) or repulsive
(U > 0). Both cases are related because of the symmetry of the Hamiltonian (1) [3].

In this letter we restrict ourselves to the repulsive case, where the ions mimic localized
f electrons, and the itinerant electrons correspond to band d electrons as, e.g., in some
rare-earth compounds [5]. Since in the FKM the ions do not move, the occupation number
nk = f +

k fk is fixed (nk = 0 or 1) for every sitek, and theHFKM depends parametrically on

the ionic configuration{nk}. For a givenN -site cluster containingNi ions there are
(

N

Ni

)
ionic configurations. It appears that the character of an effective interaction between the ions
described by the FKM can be either repulsive or attractive, depending onU and electron
and ion densities [4, 6]. It is natural to expect that an effective interaction between the ions
will also persist after they start to move. Indeed, our previous studies of the ground-state
properties of the model performed on one-dimensional clusters confirm this conjecture [7].
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Here we extend our studies to a two-dimensional cluster. The Hamiltonian that we use
contains the ionic hopping term in addition to the FKM, i.e.

H = HFKM − t
∑
〈k,l〉

f +
k fl (2)

where t is the ionic hopping integral between n.n. sites〈k, l〉. The model described
by equation (2) is usually called theasymmetricHubbard model (AHM), since it is a
generalization of the one-band Hubbard model, allowing the hopping integrals of electrons
with up and down spin to be different [8]. Indeed, the standard Hubbard model is obtained
from equation (2) after puttingt = 1, whereast = 0 gives the FKM. Note that the itinerant
ions can also be viewed as ‘heavy electrons’, since they repel the electrons (U > 0), and
their kinetic energy is smaller than that of the electrons (t < 1). The effective interaction
between two ions is well described by the ion–ion correlation functionL:

L(x) = 1

N
〈0|

∑
|k−l|=x

nknl |0〉 (3)

where |0〉 is the ground state of the system andx denotes the distance between the sites.
In order to calculateL we use a lattice version of the Born–Oppenheimer approximation
(BOA), which allows us to study many-body effects atT = 0 for larger systems than those
attainable by exact diagonalization [7]. The method consists in replacing the true ground
state|0〉 by an approximate one|0〉BOA. This is carried out in two steps.

First, the lowest-energy states are found for every distribution{nk} of the Ni ions over
N sites. In other words, the ground states|{nk}〉0 of the FKM Hamiltonian (1) are found
for every ion configuration{nk} by solving the equations

HFKM |{nk}〉0 = ε0({nk})|{nk}〉0 (4)

where ε0({nk}) is the ground-state energy of the FKM corresponding to the fixed ionic
configuration{nk}. Then the functions|{nk}〉0 are chosen to form a reduced basis for the
HamiltonianH of equation (2) and all the matrix elements〈{nk}|H |{nl}〉 are computed. This
latter matrix is then diagonalized, and its lowest energy eigenvalueE0 and the associated
eigenvector

|0〉BOA =
∑
{nk}

a0
{nk}|{nk}〉0 (5)

are used to calculateL. The method just described is believed to be relevant when the
kinetic energy of the ions is much smaller than that of the electrons, i.e. for 0< t � 1, and
it becomes exact fort = 0. We have already used the method for studying the ground-state
properties of the AHM on 1d clusters [7].

Here we report the study of the effective interactions between two ions, as mediated by
two electrons on a square cluster withN = 6× 6 sites, where periodic boundary conditions
were imposed.

In the t = 0 case, i.e., with the FKM, for positive values ofU it appears that the
minimum energy of the system is attained when the ions are located on neighbouring lattice
sites. This means that they effectively attract each other. An example of the dependence of
the ground-state energyE0 on the position of one ion when the other occupies the origin
of the coordinate system is shown in figure 1 forU = 10.

If the ions are allowed to move (t > 0), then the effective interaction between them
is represented byL. We found thatL increases with the distance between the ions, which
corresponds to an effective repulsion between them whent is not too small andU not too
large. However, for sufficiently largeU and smallt the function decreases with distance.
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Figure 1. The ground-state energy of the FKM as a function of the distance between heavy
electrons for the system of two heavy and two light electrons on a square cluster of 6× 6 sites.
The on-site repulsion energy isU = 10.

Figure 2. The pair correlation functionL as a function of the distance between heavy electrons
for the system of two heavy and two light electrons on a square cluster of 6× 6 sites. The
on-site repulsion energy isU = 10 and the heavy-electron hopping parameter ist = 0.01.

This is evidence of effective attraction between the ions (or rather between heavy electrons).
Our findings are illustrated in figures 2 and 3, whereL is displayed for some values of the
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Figure 3. The same as figure 2 but witht = 0.1. A similar form of L is observed for smaller
U (of the order of 1).

model parameters,U = 10, t = 0.01 andU = 10, t = 0.1, respectively.
The conclusions are similar to those obtained for the one-dimensional case [7]. In a

purely electronic system (without phonons) an effectiveattraction between heavy electrons
can be produced as a result of correlation effects. For sufficiently large positiveU and
sufficiently smallt , heavy electrons attract each other (see figure 2), whereas for largert

or smallerU there is an effective repulsion (see figure 3) as was also found in the case
of the Hubbard model (t = 1) [9]. In fact, the character of the interaction between the
ions depends on their density as well as on the density of the electrons which mediate
the interaction. However, the numerical analysis of the more general situation is severely
impeded by the rapid increase of basis states, even if one uses an approximate method such
as that reported here.
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